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1. Introduction

From potential theory it is well known that a series of spherical
harmonics of the gravity field is convergent outside the "minimum sphere"
enveloping all masses, In many studies it has been shown that for certain
earth models the series may be extended to a sphere entirely within the surface
of matter or the radius of convergence might be located somewhere between
these extremes. For references, see Moritz (1961), Molodensky et al. (1962,
pp. 118-120), Pick (1965), Morrison (1969), Hotine (1969, pp. 172-173) and

Levallois (1972).

: Moritz (ibid.) showed that if the earth were a homogeneous oblate
spheroid ( a level ellipsoid), then the series for V would converge at the surface.
Levallois studied the condition for extension of the series down to the surface

of a homogeneous, approximately spherical body. For such a body he found the
following condition for convergence at the surface:

k, < (0.132)"
where L e
), G+ 8.2
kna & a=0
2n+1

Cus » Sua = fully normalized spherical harmonics
For the earth we have, according to Kaula's rule:
(1.1) - k,~ 10"%/n®

Thus the condition above is not satisfied in this case. Some other models and the
corresponding radii of convergence of the series are given by Morrison (ibid).

However, in all these studies the models are either homogeneous or
bodies of revolution. Already a small disturbing body with mass centre located
outside a homogeneous sphere makes the harmonic series divergent at the
surface of the sphere (see the previous references of Moritz, Molodensky et.al.,
Pick and the example 3.1 below). Hence, because of the irregular mass
distributions of the actual earth the series of spherical harmonics must be
considered divergent at the surface of the earth (Moritz, 1961).
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These theoretical aspects do not imply that the analytic continuation
of gravimetric quantities down to the surface of the earth is meaningless. Moritz
(1969) has paid attention to this fact and states that asymptotic series, which
are mathematically speaking divergent, are frequently used in mathematical
physics. "Such series can be used if the first terms decrease rapidly enough
for their sum to provide a good estimation to the function tobe calculated; it
will not matter practically if the neglected higher terms will start increasing
again. The practical use of divergent series needs, however, to be justified.
An arbitrarily accurate approximation can be obtained only with convergent series;
with divergent asymptotic series, this error cannot be reduced below a certain
limit. It must be investigated whether this limit is small enough so as to be in
keeping with the desired accuracy."

The main object of this report is to estimate the downward continuation

error of the representation of the gravity field by a series of spherical harmonics
at the surface of the earth. We start with a definition of the problem.

2. Definition of the Problem

In the volume external to a sphere enclosing all mass of the earth®
(the minimum sphere, or Brillouin sphere) the gravity potential 'of the earth is
harmonic and can be expanded into a series of spherical harmonics:

n+1l
(2.1) v=i(%) v,
n=0
where
n
Vo= —GR—M- ? (Cpa cosmA + §,, sinmA) P,,(cos 6)
n.:O

G = Newton's constant of gravitation

M = mass of the earth

R = radius of the "minimum sphere"

(r,0,A) = spherical coordinates
Cnns S, = fully normalized spherical harmonic coefficients
P.. (cos 0) = associated Legendre function

In many cases the potential V is substituted by the disturbing potential:

L= Vay

! The atmosphere of the earth is not considered

-2-




where U is the normal potential (usually consisting of the harmonics
Uo= Vo , Uzo and Uy ). In this case the series expansion in formula (2. 1)
starts at n = 2 and the coefficients for T3, and T,, are now considered as
corrections to the normal potential.

Inserting the series expansion of T into the spherical approximation
of the boundary condition of physical geodesy (see Heiskanen and Moritz, 1967,
p. 88): i

(e %

(2_2) » Ag =-_T - Z_T.

r r

the gravity anomalies (4g) are obtained in a series of the potential harmonics:

; : : &= R n+2
(2°3) ! Ag —nza (r—> Agn
where
Ag, = %1}4_ (n-1) Y (Ca cosz + Spa sinmA\) P,, (cos 6)
=0

From (2.2) it is easily shown that rAg is harmonic in the same domain as T,
i.e. outside the surface of the earth (if the influence of the earth's atmosphere
is neglected).

The coefficients C,, and S,, of the series (2.1) and (2.2) have been
determined to various degrees (N) from terrestrial gravity observations, satellite
observations and from combinations thereof. From these coefficients the external
gravity field can be determined by a truncated series:

(2.4) | V= {: (%)MIV.,
n=0

These truncated series are theoretically correct outside the ""minimum
sphere" (R = 6384.403 km for a = 6378.140 km, see Appendix)., Now the
question arises whether the series V and A"g can be analytically continued down

- to the surface of the earth, More precisely: What is the error of such a repre-

sentation? Is it possible to find simple correction terms ?
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3. A Simple Model

Before going deeper into the problem of estimating the errors of using
sphericzl harmonic series at the surface of the earth, we would like to present
a simple, illustrative model.

A disturbing point mass m is located outside a homogeneous sphere
M with radius ro. The distance to m from the center of M is R. See Figure
3.1. Ata point P of distance £ from m the disturbing potential is:

T = E = “
L (R=+ r-2r R cos ¥) 3

where

M = Gm

G = Newton's constant of gravitation

= the angle between the radius vectors T and R
distance from the center of M to P

r

Figure 3.1. A homogeneous sphere with an exterior disturbing
point mass m. . v




; ' Azﬂ.'
(3.1 T=- 4

At a point outside a sphere with the same center as M and radius R the closed
formula for T can be expanded in the following series of Legendre's polynomials:

@ +1
(3.1) T, = %— X (%)' P, (cos ¥) , r>R

(s]

L

Applying this formula at the surface of M we obtain:

~1=z

(% )Ml P, (cos ¥)
0

L

This series is divergent fur N ==, because R > r,. The correct value for the
disturbing potential at M is given by:

o n+l
3.2 T, = £ T e e
i i 2;?+R2-2ro R cosw)% ro Zo( R) ae )

A
Thus we obtain the following error of T :
A
€r (N)=T-Ty=8T(N) + er (N

where 6T (N) is the error of analytic continuation and er(N),is the truncation
error. The truncation error is caused by the truncation of T at degree N:

er(N) = - {5 % (-%Q)Mlpn (cos ¥)

o =
n=N+1

The downward continuation error is defined by:

N
ST (N) =S:. 6T,
n=0
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where 0T, is the error caused by the improper downward continuation of (T,) »
to the surface of the main sphere. We have:
0Ty = (Te)a= (Te)a=Ca (T1)a
where -

(To= £ (27 P, (cos )

by
o \R

The coefficient c, is the relative error of (T;),. Inserting R = ro + h we obtain:

an+1l

Ca = (1+-‘-;;) -1~ (2n+1) %}

In Figure 3.2 the true value of the geoidal heights (T, /¥) and some estimates for
downward continuation are shown. In Figure 3.3 the relative error c, is illustrated.
Finally, in Figure 3.4 the relative error

N
ST(N/ ). (To)a

o

is given. The figures show that the relative errors are increas iﬁg with the
elevation (h) of the disturbing mass and with the degree (n respective N).

Now we proceed to study the errors of the gravity anomalies. In the
external case the radial derivative of T is obtained from (3.1):

(3.3) (-g—'f‘-). =- -ll;—,,zo(m 1) (l]:-')""a P,(cosy) >R
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For r < R we have from (3. 2):

(3.4). (g—'f-')f #? & (.15"_)'-;1. (co8 ¥) r <R

Both of these series are divergent for r = R. I this case we obtain the
derivative directly from the closed formula (3. 2):

3T m r=R
3.5 s oy Sy ey .
(3.9) ar),=. 2/2 R?(1-cos ¥)8 v#o0

The gravity anomaly is given by formula (2. 2):

=9 _ 2T
4 or r

Hence the formulae for Ag corresponding to (3.3) through (3.5) are:

- n+3
(3.6) Ag.=-§,zo(n-1)(-f— P,(cos¥) , r>R
Y ANCIC
(3.7) tg:=-5 5 m+n (%) Picosy) , r<mr
n=0
and
f‘ r=R
(3.8) (B8 )r=n = - £y —22

R® 4(1-cos g = ¥# 0

Let us assume that we use a truncated form of formula (3. 6) to represent the
gravity anomaly at the surface of the main sphere (r = rp):

2% & R n+2
8 - -;%lzo(n-n )" P cos )




where N is the degree of truncation. The true anomaly at this level is given by
(3.7). Thus the total error of 4§ becomes:

€ (N) = A% - Ag; = 6 Ag (N) + ey (N)

where 0 Ag (N) is the error of the analytic continuation and e (N) is the truncation
error. We obtain:

eA( (N) = -? (Ml)n

1

n=N+1]1
and
N
sag(M =) bag,
n=0
where

GAgn T dn (AGI)I:

(ag, = - L @+2) (2] p, (cos v)
dor [ Fognd @)

The coefficients c, and |d, | are the relative errors of the n th harmonic of
the anomalous potential and the gravity anomaly, respectively. c, approaches
zero for R—~ro. This is not the case for d, . The series Ag, is not conver-
gent for ro = R. The reader should notice that the usual relation between the

harmonics of the potential and the gravity anomaly is not valid in this case
(see Heiskanen and Moritz, 1967, p, 97):

6ag, # B2 o,




The influence of the disturbing masses on the anomalies is more pronounced
than for the potentials. One reason for this is that while the disturbing
potential is dependent only on the distance to the disturbing masses, the
contribution to the gravity anomalies from masses located above the point

of computation usually have opposite sign to that obtained in the downward
contimation procedure.

Finally, we derive the errors of the vertical gradient of the gravity
anomalies. We have:

-4 T neneen (3]

- 4T wenen (5] mw s

Hence, for r =ro :

6gr)n = (%Ar‘) - (BTAf*)f [(%j " 1] (%%

where

(%A'rﬂ i 'é (n-1)(n+2) (%)a-apu (cos ¥)

We notice that the relative error of 3 Ag is of the same order of magnitude
dr
as that for T. Thus the spherical harmonic series for 34g is convergent for
or
R =ro (cf. the gravity anomalies)., For this example, we have the relation:

(dg,)n= - .@_'_]'15&".2)_ &rn
r

4. The Error of the Potential

We are now going to estimate the errors of extending the potential
series (2. 1) to the surface of the earth. Some error estimates of this type
were given by Cook (1967) and Levallois (1969). See formulae (4.5 a -b) and
below. See also section 4.3.




Minimum sphere

Topography
Current point

\ P

Figure 4.1. The potential is computed at 2 point P of distance r
from the earth's center. The sphere of radius r is
denoted the sphere of computation. The topographical
masses between this sphere and the minimum sphere
makes the spherical harmonic expansion V. divergent
at P.
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The Newtonian potential of the earth at an arbitrary point is:

(4.1) V= ”f -} dv
v

where

volume of the earth

Gp

Newton's constant of gravitation

density of mass

(r°+1r°-2r,r cos 4))%

radius of the current point inside the earth

radius of the point of computation (See Figure 4.1)
geocentric angle between the vectors T; and T

o uwounnononou

€Rr 8 VDAOR T

At points outside the "minimum sphere" (r > R) formula (4.1) can be expanded
into the following series:

~18

.
(4.2) Vi 2

H_[ K (-?)n P, (cos $) dv

o VvV

i

The corresponding convergent series for points inside the minimum sphere
(r<R) is:

1
4,3 = =
(4.3) vy -

nL~38

Ia [i" (zi-t)n*' ;f“ (f;)m] P, (cos ¥) dV

o

where r, is the radius of a current point at the surface of the earth
(r<r;sr,) and 0 is the unit sphere. See Figure 4.1.

The error 6V of extending formula (4. 2) to a point inside the minimum
sphere is given by the difference between (4.2) and (4. 3):

(4.4) oV =§ 6V,

o

Iy

n

-14-
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6v, = % J}[ j.u [(%)n- (-:—‘)M} P,(cos ) dV , re SR

or
Ts

(4.5b) 6V, % ﬂ J‘p (%‘)m[(—‘;})am- 1] P, (cos $) dv
o

r

Formulae (4.5a -b) were derived by Cook (1967) and Levallois (1969). Cook
drew the conclusion that this error is in the order of JZ where J, is the n-th
zonal harmonic of the earth's gravity field. This result can easily be combined
with Kaula's rule of thumb (1.1) for estimating the error of a series of

spherical harmonics. Even if the series were extended to infinity, the error
would be negligible, so that " the 'satellite geoid' is a close enough approximation
to the true geoid". However, it is not at all obvious that 6 v, according to

(4.5 a-b) is of order J.. Levallois (1969) came to a different result, which

is reported in section 4. 3.

In this section and section 4.1 we are going to develop a formula for

6V, which can be used in 2 numerical integration. From Heiskanen and
Moritz, 1967, p. 33 we obtain:

(4'6) Pn (cosw) = ?3_.__1 z [ﬁnn (G!A) ﬁnl(ehli)"' §nl(eo )\) §u(el oki )]
5=0

where
Runs Spe = fully normalized spherical harmonics.
We have

(4.6a) ”-Ii,,. Sia d0 =0 foralln, n, m and m”

and

(4.6b) 1/4 n_[ Una Upy’ 40 = 8, B4’

where U,, is any of the harmonics R,, or S,, and 0 is the Kronecker's delta.




From formulae (4.5a) and (4. 6a -b) we obtain:

6Va =) [ Run(82) +Bou Sou (8 1)]

s=0
where :
(4. Tb)
-“ s n n+ R“(O. ) £
{%} 3 ﬁ;—‘ -[,H il ] {8..(9:. :)} ;

If we assume that u = u (6,)) (independent of r), we obtain:

ww o g eren (g e i

where

0 if r2r,

+3 (n-a)_
(4.8b) Kr, ) = ©° (x/0)" -1, (&/r) 1

if r<r,n#2

n+3 n-2
-]
(_r.%li én (s /1) ifr<m,n=2

Formulae (4.8a -b) can be applied with u = uo = constant if we neglect the
ellipticity of the earth (spherical earth with topography). The integration is
then performed over the topographical masses. If we also consider the earth's
ellipticity the integration will include the masses of the oceans above the lower
bound r of the integration. See Figure 4.2. If we assume that the oceans have
the constant density u, and the solid crust the constant density u, the integral
(4. Tb) becomes (see Figure 4. 3):

Run (81)
(4.80) {b.. T H pIN Wan

where | 3

BI(r,re) = “0? (rym;p) + “n—l(rborl)



Minimum sphere

Earth ellipsoid
Topography

Figure 4.2. The computation of the error coefficients a,, and by,
for any point P on a selected sphere of radius r (sphere
of computation) includes the integration of all masses of
the oceans and topography between the spheres of radii
r and R.

MY R, ——__Sea Surface

Fow Ocean

Ocean Bottom

[T T b a7
e | : %

Figure 4.3. The density of the masses above the sphere of computation
is uo for the solid crust and pw for the ocean.
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1
§
;
:?

= By
I (xly) = rn+1

r“a[ r‘fnﬂ] dr,

ry, = geocentric radius of the bottom of the ovean.

xe

The integral 1 (x,y) is straight forward and the result is (cf. 4.8b):

0 if x2y

(N2 M E 725 Y € 72 et ¢ 72.3
n+3 n-2

T(X9Y)=r2 » X<y ,n#2

.(L/l.:f%e‘ﬁﬁ-%(y/x),x<y’n=2

The coefficients a,, and b,, can be used to correct the spherical harmonic
development of the potential*at all points on the sphere of computation with
radius r. Then we add a correction:

AC“ Ana n+1
.1 a5 &)

to each potential spherical harmonic coefficient of the series expansion. It
should be emphasized that these corrections are valid only for the potential
and cannot be used for improving near surface expansions of gravity anomalies :
(cf. section 6).

From (4.5a) we draw the conclusion that if the masses between the
spheres of radii r and R were symmetrically distributed with respect to the
earth's axis of rotation, then all tesseral harmonics a,, and Dea (with m#0)
would vanish, This is obvious because in that case (4. 7b)becomes:

i amn
(4.9) Tw=[ Q. [ Ru dA sin0 4@

6=° A:o

where

Ts

= _..__1_.71 I prst? [1 - jnn] dry
;

(2n+l) r

* See formula (2.1).




The same is true for b,, . However, for the real earth with its irregular mass
distributions this assumption is not valid.

4.1 An Approximate Formula

Formula (4. 8b) can be approximated in the following way (for
H = I‘. - > 0):

+oo.

=14+ (43 % 4+ (0#3)(n+2) (21_ )3 + (0+3)(n+2)(n+1) (E $, (0+3)(n+2)(n+l)n (H)‘

2 r 1x2x3 5 2x3x4 T

and

¢ e

k=0

b b et

+ooo

-1- (@2 B, @200 (B} @Ao-bo (B, @fe-hom )

2 1x2x3 2x3x4 5

Inserting these series expansions into (4.8b) we obtain:

2
@ temean w[id By g, ]

In Table 4.1 we compare formula (4.8b) with the approximation
(2n + 1) H°/2 according to formula (4.10). It is shown that the error is increasing |

with the degree (n). For n= 50 the error is less than 1% and for n = 100 it is
almost 2%.

=19~
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Table 4.1

Comparison between (2n+1) H>/2 and I(r, R)
R=6384 km, H=R-r= 27 km. Units : km®

(2n+1) H/2 I(r, R) Diff. Diff. /1%

7654.5 7677.4
22234.5 22328.6
36814.5 37060.1
73264.5 74591

109714.5 113812
146164.5 155627
182614 201019

Inserting (4.10) into (4. 8a) and neglecting terms of order -i-’- and higher

we finally arrive at:

(4.11)

where

If we also consider the ellipticity of the earth we obtain from (4. 8c):

(4.11a) {i"} =3 H [(uo - W) B+ po B {2"} do

where

density of the solid crust
density of the oceans
H if continent
0 if ocean with r2r,
ry~-rotherwise.




4.2 Effect of Ellipticity

In this section we are going to study the error of extending the spherical
harmonic expansion of the potential to a point P at the surface of an oblate
homogeneous ellipsoid (see Figure 4.4). The error is caused by the masses
outside the sphere of computation of radius r.

Figure 4.4. The downward continuation error at P is
obtained by integration over the (shaded)
masses between the spheres of radii
r and R.

The error coefficients due to the improper downward continuation can be
determined by formula (4.11). With notations according to Figure 4.4, we

obtain:
2 / 2
_.l-—e_ s r =R —.l—ew___

1-e®sin® 0 1-esin 6,

]
™
L}
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2
H=re-r = —Rzi (cos® 0o - cos® 8) + O (e*)

It has already been shown in (4.9) that the coefficients @,, and b,, are 0 for
m # 0. For m =0 we obtain from (4. 11) and the above expression for H,
when neglecting terms of order higher than e*:

e eo
(4.12a) T,0=ce' I (cos® 8, - cos® 6)° P, (cos 6) sin® d 6
6= 90
where
c=GpnR*/4a
In the special case 6,=0 we have:
m
(4.12b) a,0=ce' I (1- cos® 6)° B, (cos 0) sin6 d6

o

The factor (1 - cos® 0)° is readily rewritten:

(1-cos®6)® = ¢o + c3 B, (cos 6) + ¢, P, (cos 6)

where
i Lo
el S S i R Bl

Inserting this expression into (4.12b) and using the orthogonality property of the
Legendre's polynomials:

e o 2 n=m
[BoRma=-{

-1

n#m

-22-




we finally arrive at

Co if n=0

S e 4 Ca if n=2

s Ry 200 { c, if n=4

| 0 otherwise

For p = 2.67g/cm®, R = 6378 km, ro= 6371 km, ¥ = 978 gal and
5 e®= 0.0067 we obtain:

200- 27.9m | 22| ~ 4.3 x107°
Y Yo

220-17.8m | 222 | ~5.8x10"°
¥ YroCao

2:0- 4.0m | 249 | ~ 1.1

Y YroCyo

From these coefficients we obtain the following downward continuation
error at the poles (6, = 0):

Thus the errors of the individual spherical harmonics compensate each other at
the poles.

For an arbitrary point P (85) on the surface of the ellipsoid the downward
continuation error in an expansion to degree N is given by:

6V(N) = ) &0 (r) P, (cos 6)

[}

i~z

Inserting (4.12a) into this formula and changing the order of summation and integration
we obtain:




Sv(N) =ce* I (cos® 8, - cos® 0)’2 P, (cos ) P, (cos8,)sin 6 d 6

eO n=0

Using the substitutions:

t=cos6 , to= cos B,

B, (t) P, (to) = (20+]) P, (1) P, (to)

we arrive at

to ‘
(4.13) SV =ce' [ (1F- 17 (2n41) P, (t) P, (to) dt
-to n=0

It is shown in Proposition 4 of the Appendix that this formula may be written:

6V (N) =c ' t§ gu()

where

_ 5 M(M31) [ Pu(t)- Pus _ Pua(9-Pu(t)
B =2 Gt [ mb o Peatto) - BeplR By e ]

=

{N- if N is odd
N+1 if N is even

0stTst
The function gy (and subsequently 6V (N)) has the following properties:

gvn(0) = gn(1) = 0

-24-
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From formula (6.9) we obtain:

o gu(to) = 3 54g (M)

and the rough approximation:

6 i Rea 25
(4.13a) V(N)~T to 04g(N)

where §4g(N) is the downward continuation error of Ag in an expansion to degree N.
For R = 6378 km, €° = 0.0067 and ¥ = 978 gal we have:

él;_'@g, 0.011 tZ 6 Ag(N) meter,

where 6 Ag is in units of mgal. From Fig. 6.1 we finally obtain:

6";16 < 0.45m and 6";5 <0.19 m

This development indicates that the downward continuation error of the truncated
spherical harmonic expansion of V is small and decreasing with the degree of
truncation. On the other hand, the following spherical harmonic expansion for
the potential in the exterior of a homogeneous oblate ellipsoid is known from
potential theory (see MacMillan, 1958, p. 363):

_ }GM 3 (-1)" ne \"
s by .Zo (2n+1)(2n+3) (.:)‘ Paa (co8 6)

-25-
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where M is the mass of the ellipsoid. This development has the radius of
convergence ae, which is inside the ellipsoid. However, the potential provided
by (4.14) is correct only on the surface and outside the ellipsoid. This fact is
indirectly verified by letting e approach zero, in which case (4. 14) becomes:

GM
r

Ve =

This is the well known exterior potential of a homogeneous sphere. The radius
of convergence is zero.

In conclusion, formula (4.13) is the difference between the expansion
(4.14) to degree N and a spherical harmonic expansion (at the radius r), which
is valid also inside the surface of matter. For N approaching infinity, the sums
of the two series are identical for exterior points. Inside the surface of matter
they differ.

In geodesy, we are mainly interested in the exterior gravity field and
a potential expansion of the mean earth ellipsoid (MEE) similar to (4.14) is there-
fore most convenient. Unfortunately, this ellipsoid is not homogeneous and (4.14)
can not be applied. However, the MEE is currently approximated by a level
ellipsoid, the external gravitational potential of which can be expanded in the
following way [Heiskanen and Moritz, 1967, formulae (2-88) and (2-91)]:

3n
2 3GM A A N C-A\ (2eY p.. (cos b
b (2n+])(2n+3) (1 it Ma’e? ) (r ) R

where C and A are the principal moments of inertia. If we anticipate this model

for the mean earth ellipsoid, there will be no contribution to the downward

continuation error from the ellipsoid. However, the previously derived correction

formulae (4.8 a-b) and (4. 11) for the disturbing topography needs a modification.

In these formulae it was assumed that the radius (r,) of the mean sea level was 1
constant. Now we assume that:

l-e
T, = ,[ e —
" 1-e° sin“ @

Then (4.8a-b) and (4. 11) are modified by inserting:

(4.15) 22 {r.ifr<r.

r i rer,

26~




Formulae (4.8a-b), (4.11) and (4.15) should be feasible expressions for a
numerical study of the downward continuation error of the potential, Formulae
(4.8c) and (4. 11a) are less convenient unless the spherical harmonic expansion
that is valid at the entire sphere of computation (also inside the earth) is required.

4.3 An Error Estimate for the Potential

We may substitute 6V of formulae (4.4) through (4.7) by the error of
the disturbing potential, 6 T, if we assume that the reference field is unchanged.
Formula (4.5b) is then written:

(4.16) -1 J'_” ( )"1" 51”1-1] P, (cos §) dv

At sea level (r = ro = R-H) this error is of the following order of magnitude:

(4.17a) 6T, ~ [(%)anﬂ—l] AT,
where %
(4.17b) AT, = %o J'J‘ L“ (foi n#lpn (cos ¥) dv

For low degrees of n we may use the following approximation:
(4.18) 6T, ~ (2n+1) -;1 AT,

AT, is the contribution to T, from the topography. If we assume that the
disturbing potential is generated entirely within the topography of the earth, we
Lave [cf. formula (4.3)]:

(4.19) AT, ~ T,

Assuming that the low order harmonics of T is only partly originated within the
topography, we may use the following approximation:

27~
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(4.20) AT, = pa Tx

where

p=l-e™ 0<a<w

The coefficient a can be determined empirically by comparing a spherical
harmonic expansion of AT (formula 4.17b) with that of T. In the limit a=~,
(4.20) is identical with (4.19). For a =0, we obtain AT, = 0, that is, no
contribution to T, from the topography. The approximations (4.18) and (4. 19)
were used by Levallois (1969) in the following way:

6T =) 6T, ~ B Y (204 T, =
5 R p

< nT B anem i

where we have used the relation:

¢ = BAg

n-1

The error of the geoidal height is then:

5T Lg
ON= — =~ 2
Y ¥ Y

For H =27 km, 4g = 100 mgal and ¥= 980 gal this formula implies:

6N~ 5m

However, the approximation of (4.17a) by (4.18) is adequate only for lower orders,
(say, n < 150). Consequently, the above order of the error does not hold if we
include harmonics to infinity.

-28-




4.4 Global RMS Errors

Spherical harmonics of different degrees and/or orders are orthogonal
to each other, see formulae (4.6a-b).

Thus, the global RMS error of 0T is given by:

(4.21a) 16Tl = [4%2 ”(6T,)’dc]§
n O

where

(4.41h) = [J 6Ty do = |6, |12 --Zf,,ﬁ b.°)

The last formula is obtained by substituting (6 V), by (6T), in formula (4. 7a).
The total error of T for a truncated series of spherical harmonics is (cf. section 3):

(4.22) €r(N) = 6T (N) + er (N)

where N is the order of truncation, 6T (N) is the downward continuation error and
er (N) is the truncation error. We obtain:

(4.23) lleram il = [;!% i IJ = d"]i g [i °3]§
N+1 Nl
where
02 = 41? T2 do

02 are the degree variances of the potential. From (4.22) we arrive at the following
formula for the total RMS error when noting the orthogonality between spherical
harmonics of different degrees:

ller@ I = [T @I |lerm]]?
Definition 4.1: The optimum degree of truncation (No,:) implies

I tr(N)” = minimum

-29 ~




The downward continuation error is increasing with N while the truncation error
is decreasing. Consequently, | € (V)| is minimum when the Nth term of
6T M\l equals the (N+1)th term of [ler W], i.e.:

(4.24) NoTull = ousr =N = Nog

An approximation of 0Ty is obtained from (4.17a) and (4.19):
N R n+l

(4.25) 6T, ~ [(1’0 -1] Ty

where R is the radius of the minimum sphere (~ 6384 km) and ro is the mean earth
radius (~ 6370 km). Inserting (4.25) into (4.24) we obtain:

2N +1
@y

As the degree variances are decreasing with N we easily arrive at:

(4.26) Nopt S 595“;"1—% , H=Tr-1o

or with the above numerical values for R and ro:
Nopt S 158

The following values for the potential degree variances were given by Tscherning
and Rapp (1974):

- 0 for n< 2
o ={

A l‘oa n+l
(n-2)(n-1)(n+24) iy UL

where

8 = (rgye/To)° = 0.999617
A = 425.18 [mgal®]
ro= 6371 [km] (ro= 6370 km was used in the computations,)
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The graphs of || 5T | /7, ller() || /7 and [ €:(N)|| /¥ for these degree variances
; are illustrated in Figure 4.5. The total error || €[|/¥ is minimum for N = 157.

| This error is 1.17 m (~ 4.7% relative error). Most of this error (1.05m) is due

to the downward continuation error.

In the estimates above we have assumed that:

Ts
Ty ~ AT, = %o J!' 1‘-[0 K (—:%)“1 P, (cos ¥) dvV :

e

A different approximation was suggested in formula (4.20):

AT, = pa Ty
where

p=1-e* , 0<a<e

For this estimate (4.25) and (4. 26) take the forms:

L R n+l

(4.25) 6T, = [(-r-;)z -1] Pa Ta

- and :
Toln(l+ —)

‘ (4.26) Nopt < -3—23—-1’-’1

Let us assume that :

Pioo = ﬂlﬁo= 0.95
T100

This relation corresponds to a = 0.03. The resulting RMS errors for downward
contimationare illustrated in Figure 4.5. It is shown that [[6T|| < 4% of | T|| for !
N < 200 and the total RMS error is minimum for N = 158. This minimum is :
| approximately 3.5% of IT|l. The largest uncertainty of these estimates is the
| relation R introduced in the approximation (4.17a). The sensitivity of the

To
solutions of ||6T|| and Nop« for the difference H = R-ro is obtained from the
following approximate solutions: ]




Differentiating this formulae with respect to H we arrive at:

(4.27) |43T(N) s - |2 =

N)j- |qNoe.

OT(N) Nop

Now H is in the order of 13 km and the error dH .may be several kilometers.

If we assume that dH ~4km, we obtain a relative error of 31%. Thus we conclude
that the RMS estimates given in this section might have considerable errors due

to the uncertainty of the basic approximation (4. 17a).

5. The Error of Gravity Disturbances

The error of downward continuation of the vertical derivative of V in
a series expansion is obtained from formulae (4. 2) through (4. 4):

O
(o7 NeY)
"<
oyl ko4
3|2
(o7}
[o7]
n <
(o 7]
"JOI

If we subtract the normal field U from V in this differentiation (and change sign
of the whole expression) we obtain the gravity disturbance:

Assuming that the normal field is the same for T.=V.-U) and T, (=V;- U) we
have the error:

ov

1 i

el 87 @-
(5.1) Ab, = e 6T
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We use the notation:

Aor =E An
n=0
where
e i
A, = dr 0V,

It is shown in the Appendix, Proposition 1, that 4, can be written:

n+1l

Ts n
A, = rla JM“ (%) @v+(E) o] Pueosy) av

This expression can be rearranged in the following way:

Ts
hon B2 H J‘ gl [1_ (;1‘;)2“1] P, (cos ¥) dv +
O r

rMB

Ty
+ 2“:1 ”I m (-E—)Ml P, (cos ¥) dv
r (2R 1

Coumparing with formula (4. 5a) we find:

n+l

Xs
(5.2) A, = -(2:—11 6T, + 3-:-;-“1 Jli[ u ({-’) P, (cos ¥) dv

-34-




where 0 T, is the error of T, caused by the analytic continuation down to r.
Furthermore, we have for r = ro [radius at mean sea level, cf. (4.17b)]:

T

(5.3) AT, = é H I M (%‘:)n P, (cos ¥) dv
0 ro

AT, is the contribution to the disturbing potential harmonic T, from the anomalous
masses located outside the sphere of radius ro. Thus we have:

A, = ri [(n+l) 6T, + (2n+1) AT,]
(6]

or, after inserting (4.17a) for 8T,:

1

+n]

Finally, we sum the harmonics A, to the degree of truncation (N):

n+
(5.4) A, = A—I_':A [(n+1) (%)

2n+1

(5.5) a6, =1 N?[(nﬂ) ({_3;) +n] AT,
=0

where according to (4. 20):

AT,=p,Ta » po=1-e&

Formula (5.2) gives an "exact" value of the downward continuation error for
3T
or *

Formula (5. 5) is an approximation.

6. The Error of Gravity Anomalies

The gravity anomalies are related to the gravity disturbances by:




In: the same way we obtain for the errors of downward continuation:

oAg=A6.-3-:-—T

F’ or
64g, = A, - 391'.2“
] where 8Ag is the error of Ag and 0Ag, is its n-th harmonic. By inserting
E (5.2) we obtain:
s +1
(6.1) 54g, = =l o, + 201 H J‘ m (-"—5 P, (cos ¥) dv
r r o ¥ Iy

and approximately from (5.4) for r=rp:

2n+1

(6.1% 6Ag, = %—“ [(n—l) (—1:;) +n+2 ]

This error is of the same order as A, .

The first part of (6.1) is already expressed in terms of spherical
harmonics (see formulae 4.7 a-b). The second term may be written:

Ts
(6.2a) _21:3_-}1 I&f i-[ W (;1;-)“ 5 P, (cos ) dv = %2([,5,. Rua + Ga Snal

where

qéu‘ a+l n
om G- E e
Assuming that u = u (8,2) (independent of r) we obtain:
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(6. 3a) {;::} = H B J(r,T) {gn:} do

where
0 ,'ifl‘zr.
n-3 s
(6.3b) J(r.r.)=r3{ 1—'-&1-'_/—;1)— , ¥r<n,n¥2
on(xa /1) ~, fr<r,n=2

For H=r. - r > 0 the last formula can be expanded into the following series:

(6.3c) J(r, %) = rH - -t%l— H + ...

The error of Ag is thus given by:

(6.4) g = Y ¥ ke Re + BuBa)
N

where

Kn- - X [(n-1) 8 + Coa ]

s

Bn = —l'- [(n'l) -Bﬂl + au]
or R

xﬂl Rnl
6.5 g R BN y,Tr){_ L do
o et Jlases )
where

0 if ra2mr,

n+3 -(ra)_
K(ryr) = r { (n-1) _(__)___r./:+3 21 | (oe2) (L./rl):- >

2

Lrﬁ/—g)s_-_l + 4 0n (r./r)

if r<m, n#2

if r<r,, n=2

el kb s i,

cinl) b e




The last formula may be approximated by:

@ {5} =oe, [[® (g}

For one more term in the approximation (6. 6) see Prop. 2 of the Appendix.
Formnla;gs. 6) can also be determined directly from the potential coefficients
a. and b,,, using the boundary condition (2. 2):

e ({7

or
3%
K(r, 1) = - (-5; + ?) I(r,xs)
Inserting (4.10) and noting that ;r- 'l % we finally obtain:
2
(6.7) K(r,r.)=(2n+1)H[1+ 1‘551}‘(;—*31- (-:_l) +]

where the first term of K is the same as in (6.6). In Table 6.1 it is shown that
(6.6) is a good approximation of (6. 5).

Table 6.1

Comparison between H=27 km and - R K(r, R)

2n+1
for R=6384 km, r=R-H

n 51-!+1-i K(r, R) [km] Difference {m] Rel, diff. %

10 27.00877 - 8.77 0.03

20 27.03394 - 33.94 0.13

50 27.20732 -207.3 0.77
100 27.82721 -827,2 3.06

T
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In formulae (6.3 a-b) and (6.6) we have assumed a spherical earth with
topography, where the only contribution to the coefficients A,, and B,, are given
by the topography. We may also include the effect of the earth's ellipticity. In
that case puK(r,r) of (6.5) is replaced by (see Figure 4. 3):

Ko K(r,m) + pu K (Tvy Ts)
where r, is the radius of the ocean bottom and:

0 it rpy2x,

- n+3 n+3 -(n- )_ —(n-a)
R(rorm= ¢ { (oot) ELTAR/IT g (/0 B, <r.

n+3 n-2 ' a¥ 2
(rs/1)°- (1/1)° S n<r,
5 + (r' rb) 1) n= 2

In this case we arrive at the following approximate formula corresponding to (6. 6):
6.6 {K" I H S d
: = t=[[ rea i } 0
(6.6 5. R {s.
where

F(H,Hp) = v H+ (Mo - Hv) Hp

H if continent
Hpy = 0 if ocean with r> ry
rp - r otherwise

However, in the next section it is shown that formula (6.6 ") is not very useful for
our purpos: « determine the downward extension error to the surface of the earth.
It seems more convenient to use a modification of (6. 6) [cf. section 4.2].
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6.1 Effect of Ellipticity

The error of Ag due to the improper downward continuation to the
surface of a homogeneous ellipsoid can be estimated in the same way as the

.error of V in section 4.2. In this case, we obtain for an arbitrary point

P (0,) on the ellipsoid.

N
(6.8) b4g (N) =Y. A.o P, (cos B0)

n:O
where 2

Ao=ke® I (cos®6, - cos® 6) P, (cos ) sin 8 d 6
6o

and

k= GpomR

For 6, =0 the last formula is easily integrated (cf. section 4.2) and the result is:

=3 for n=0
Kno=4kea{-—-}_— n=2
3/5

0 otherwise

For Po= 2.67 g/cm® R = 6375 kin and €° = 0.0067 we have the following numerical
values of the error coefficients:

A = 3.188 gal. and Ago= - 1.425 gal.
Inserting these coefficients into (6.8) we arrive at:

N
BAg(N)=2 xaoin 1H)=0, N22

n=0

D e

% s il b S,
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Thus there is no error at the poles. For an arbitrary point P(8,) we obtain from
Proposition 3 of the Appendix:

6.9 Oagy= 2ke” JULN [ U2 By - TSR B ]
‘ ; where

| Py = Py (cos §
1 N if Nis odd

M= {
N+1 if N is even

From (6.9) it follows that 6 Ag (N) is decreasing towards zero for increasing N,
because:

n-0 when N - =

For low order expansions it is shown in Figure 6.1 that the "errors"
according to (6.9) are considerable. For example, the maximum error for
N =16 is 83 mgal, Again, it should be emphasized that these values are the
deviations of the external series from the true series at the sphere of computa-
tion (cf. section 4.2), When N approaches infinity the sums of these two series
are identical for exterior points. Thus the external series is indeed convergent
and is a correct representation all the way down to the surface of a homogeneous
ellipsoid. The same holds for a level ellipsoid. Hence, if we anticipate the
mean earth ellipsoid as a level ellipsoid, the only contribution to the downward
continuation error of Ag to the earth is given by the topography. The error
coefficients A, and B,, are then computed from formula (6. 5) or (6. 6) with
the modification (cf. section 4. 2):

N £ E<T;
TE
r i rer

r. = R J(l-e“)/(l -e° sin® 0)

Formula (6.6') should be used if the spherical harmonic expansion that is valid
or :he entire sphere of computation is required. .1
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6.2 Global RMS Errors

The total error of Ag for a truncated series of spherical harmonics is:

©e(N) = 6 Ag(N) + ey (N)

where O‘Ag (N) is the error for the continuation and ex (N) is the truncation
error. The global RMS of €, (N) is:

(6.10) lesll = [ l6ag I + lleae @ 1712

At sea level we have:

lege@ P =Y o2 ag)

N+

-

or, for
- bl
O (Ag) = To On
2 §' n-1 ’
= n-1 2
(6.11) leas ™[I = (I‘o ) o
N+1

where 0 are the disturbing potential degree variances.

From (6.1") and (4.20) we finally obtain the approximate formula:

an+1
2

(6.12) ||‘548(N)||a L i [(n-l)( ) + n+2]a ps o

Lo

where

Pn= 1-e y @@= 0,03
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The formulae (6.10) - (6.12) are shown in Figure 6.2 for the degree variances
of Tscherning and Rapp (1974). In this figure we also depict the corresponding
RMS errors for 5°x 5° block mean anomalies, which are obtained by multiplying
each degree variance of formulae (6.10) - (6.12) by the smoothing factor fn°
(see section A.3 of the Appendix or Meissl, 1971).

7. The Error of Vertical Gradients of Gravity

The error of the vertical gradient of gravity is given by the derivative
of 6 Ag with respect to r:

BN TR
(7.1) 6g: = 6 gl e GAg—Y‘ = 64g,
n=0
From formula (6.1) we obtain:
d n-1 n-1 93 2n+1 2n+l 9
=0 = - 6 s = =it
{78 dr Ae. T2 5 r dr o7, —I'TAT“+ dr .

where AT, is given in formula (4.17b). The derivative of AT, with respect to
r is (cf. Proposition 1, Appendix):

2

e A e
5% AT, = . AT, rJ. U P, (cos $) do

(o4

Using the approximation 4 = po = constant, the last integral vanishes for n # 0.
Thus we have:

aif AT, ~ %— AT, , n#0
Furthermore, we obtain from (5.2):

2

L | - AT,
e 6T, - 0T, - (2n+1) .




Inserting these derivatives into (7.2) we arrive at the following formula;

g _ _ (n-1)(n+2)0T
(1.3) 6 =8 L__M;gL_J

This relation is the same as the relation between the spherical harmonics

(%Af') and T, themselves in the external case. Thus we have:

34g,
(7.4) : i oty
g g | |'T,
or

The error of the vertical gradient of gravity can also be estimated from (7. 1),
(6.4), (6.5) and (6.7). From (6.4) we obtain:

6g: = z [Enl ﬁnl + —Dn-§n|]

where
i i
Cnl i a_r' Au
i B
D = o B

Using the approximations (6.5) and (6.7) we arrive at:

2 ooy [+ 00D BB, T, gnyy[-g - clied) (HY

;g' *ee0
so that [for (n,m) # (0,0)]:

ns - ﬁn
e R

Comparing this formula with (4. 11) we finally obtain:

T

%
3
3
%

}
4
R
%




Cu n-1)(n+2) [ 3na
{‘ }= : L%"_zl {5“

Dna
This formula is equivalent with (7. 3).

8. Computations with 5°x 5° Mean Elevations

1654 mean elevation blocks were used to compute the downward
continuation errors in a spherical harmonic expansion of the disturbing potential
and the gravity anomaly. In all computations, the density of mass (po) was set
to 2.67 g/cm®. The spherical harmonic series were expanded to degree 16 (if
not specified).

8.1 Computations for a Spherical Mean Earth

In the first set of computations we assumed a spherical mean earth
with radius r = 6371 km. The downward continuation error for each harmonic
of the disturbing potential and gravity anomaly can then be written according to
formulae (4.11) and (6. 6) respectively:

o} ] (o) ac
oo} - om [ 5 {5} ao
o

Ls-T if n>r
n={

0 otherwise

The computed error coefficients are shown in Tables A.1 - A.2. From these
coefficients the errors of V and Ag were computed from:

16 n
(8.3) bv= S‘ ? (@2 Raa (8,1) + bpa Spa (6,1) ]
=0 a=
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and

16 n
(8.4) 6Ag = Y T [Ana Rug (8,4) + Boa Sua 6,2)]
=0

n n=0

The only area with any significant errors 8 V/y was south of the Himalayas. In
order to estimate the errors at the surface of the earth in this area, a second
computation was performed with r = 6374 km. Then the errors were interpolated
between the computations with r = 6371 km and r = 6374 km. The maximum error
estimate did not exceed half a meter.

The errors of the gravity anomalies were in the same order as the
anomalies themselves (Fig. 8.1). These surprisingly large errors are not in
agreement with the empirical results obtained through a direct comparison of
satellite derived spherical harmonic expansions with terrestrial gravity anomalies.
We conclude that the approximation of the mean earth with a sphere is too rough
for estimating the anomaly errors.
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Figure 8.1, The downward continuation error of Ag along two profiles
at sea level using formulae (8.2) and (8.4). Degree of
truncation: 16.
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8.2 Computations for an Ellipsoidal Mean Earth

We anticipated an ellipsoidal mean earth with the following parameters:

o
1]

6378140 km

n
I

1/298. 257

The integration of the error coefficients for 6 V and 6 Ag was performed according
to formulae (4.11a) and (6.6 ):

(8.5) {;“} = % _” [(Po-Pu) Hy +pw H?] {:"} do
and
(8.6) {%} = 6 [[1po-p) By + 04 H] {.?::} do

where P, = 2.67 g/cm® and Pv = 1.03 g/cm®.

The computed coefficients 2oy, 350, 3405 Aoco, and Ay, agreed very
well with those determined in sections 4.2 and 6.1. The downward continuation
"errors' for two profiles are shown in Figures 8.2 and 8,3. It was found that the
geoidal undulation errors were small (less than a meter) while the gravity anomalies
deviated up to 70 mgal in an expansion to degree 16 (cf. sections 4.2 and 6.1). The
results are not in agreement with the empirical knowledge of the errors of down-
ward continuation.

8.3 Computations for a Level Ellipsoid with Topography

In this section we make use of a mean earth level ellipsoid with the
same dimensions as the ellipsoid of the previous section. For a level ellipsoid
there iz no contribution to the downward continuation error to the surface. We
could therefore use the formulae (8.1) - (8.4) with the modification:

ry i Ty>r
(8.7) r={

r i r,sr
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where

% =8 J(l-ez)/(l- e’ sin® 0)

For r = a/1-e° (at the poles), these computations are identical with those given

in section 8.1. In Tables A.3 - A.4, we give the error coefficients for r = 6371 km.,
In Figure 8.4, we show the degree variances (0,,3 ) of the potential coefficients as
defined by:

(8.8) 0, = (L B (@ne + Box)

In Figure 8.5 the accumulated RMS errors of the geoidal undulations to degree
N.ax = 16 are shown. These errors do not exceed 0.13 m.

The downward continuation errors of the gravity anomalies in an
expansion to degree 16 are depicted in Figure 8.6 along two latitudes at sea level.
In Figure 8.7, the expansions to N =16 and N = 24 are compared for a profile.
Large error estimates are obtained at the edges of the continents. Otherwise,
the errors are within £5 mgal.

9, Conclusions and Final Remarks

In this report we have investigated the downward continuation errors
for spherical harmonic expansions of the gravity field of the earth. The simple
model in section 3 showed that these errors are increasing with the height of the
surrounding topography above the computation point. Furthermore, the relative
errors are increasing with the degree of truncation of the series. It is also
shown that the usual relation between the spherical harmonics of gravity anomalies
and disturbing potentials is not valid for the errors of downward continuation:

bl S

(9.1) 6 Ag, # Er'l 6T, ) s

The errors of Ag, are usually more serious than would be the case if
this relation were true. One reason for this is that while the potential is dependent :
only upon the distance to the generating masses, the influence on the gravity ]
anomalies from masses located above the computation point usually has opposite
sign to that obtained in the downward continuation procedure. Thus, the relative
errors of the gravity spherical harmonics are more than 100% in the model of
section 3, where the only contribution to the anomaly is the disturbing mass out-
side the main sphere.
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For the error of the vertical gradient of gravity (6 g.), the following
formula was found for the model:

(9.2) (6ge)s = - ﬂ'—?-g‘lzl— 5T,

which is the same as the relation between the harmonics themselves.

Some general global RMS errors were estimated based on Tscherning/
Rapp's degree variances. In the low order expansions (N = 30) the errors of
geoidal undulations are 2.2 dm in the most optimistic estimate (o = 0.03) while
the RMS errors of gravity anomalies reach 16 mgal. These error estimates of
the gravity anomalies seem too large, which might be due to the uncertainty in
the basic approximation (4.17a).

Formulae were developed for a numerical integration of the downward
continuation errors [formulae (8.1) through (8.7)]. Formulae (9.1) and (9. 2)
were found to be valid also for the real earth,

In sections 4.2 and 6.1 formulae (8.1) and (8.2) were tested at the
surface of a homogeneous ellipsoid. The calculations showed that the "error"
coefficients of degree 0, 2 and 4 were considerable. However, the errors
8V (N) and 6 Ag(N) were attenuating with N to zero for N approaching infinity.
The reason for this strange result is the following. Iside the minimum sphere,
the poiential of a homogeneous ellipsoid may be represented by two different
spherical harmonic series: one which is convergent on the entire sphere of
computation (also inside the ellipsoid) and one which is valid only outside the
surface of matter. The latter is identical with the expansion outside the bounding
sphere. As we are only interested in the errors on and outside the surface, we
are looking for the downward continuation error of the latter development, while
formulae (8.1) and (8. 2) give the errors relative to the first series.

It was therefore suggested that formulae (8.1) and (8. 2) should be
modified (when applied to the real earth) in such a way that there are no con-
tributions to the downward extension errors from the masses of the mean earth
ellipsoid (level ellipsoid). This modification [formula (8. 7)] implies that the
errors of the spherical harmonic expansions are merely due to the topographical
masses above the sphere of computation.

In the final computations with 1654 5°x 5° mean elevations (section 8. 3)
we arrived at very small errors of the geoidal undulations (RMS error = 0.13 m
for N = 16). The degree variances of V were found to have a maximum 38 x 107
for n =6 and r = 6356.73 km (at the poles).
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Finally, we conclude that the gravity anomaly errors seem generally
to be within +5 mgal. However, at the edges of the continents and within rough
areas on the continents, larger errors might be expected. Such areas may be
studied in detail by utilizing the method described in section 8.3.
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Appendix A.1

A.1 Computation of '"Minimum Sphere' Radius

The radius of the "minimum sphere" is computed as the maximum
sum of the radius at sea level b/V1-e®cos® @, the height of the topography (h)
and the geoidal undulation N:
R = maximum earth (R;)

where

Ry = bV1-€®cos® o + h + N

b =avi]- eE
a = 6378.140 km

e = 6.694407 x 10™° (f = 1/298. 257)

The maximum was obtained for Mount Chimborazo in South America (¢ = - 1,45°),

with:

Ry = 6378.126 + 6.267 + 0.010 = 6384.403 km

i e




Appendix A.2

A.2 Derivation of Some Formulae

Proposition 1:

(A.1) 8,=- 2 bv,
: where g
v L[] [ W[(@)- (2] momsras
Or

dv =rf® dr,do

implies
Ts

a,-1 f f m [(n+1)(-rl-})n +n (%)“1] P, (cos ) d V
r

r
(o]

Proof: We rewrite 8V, in the following way:

(A.2) 6v, = ” K(r,rs) Py(cos d)do
2 ;
where o
(A.3) K(r,rc) = I k (r,r,) dr,
r
and

k= B [(2) - (5)7]

ry

Thus we obtain:
Ts

(A.4) air K (ryr) = I a-a;- k(r,ry)dry - k(r,r)
r

|
k|
E |
b |
e |

i
: |
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where
_; (A.5) k(r,r) = 0 g
and
: (A.6) a—af k (T, 1) = -El-f-'; [(n+1, (1;_,)" +n (%>n+1] :

By combining (A.1) through (A.6) we arrive at the proposition.

L.' Proposition 2:

' 0 if r2n

E AR ~(n-2) '
Given: K(r,rs)=r { (n-1) (f/r) -1 - (mZ)M)——l y if r<r,

; n+3 n-2 i # 2

4 5
3 ‘r‘_/;.)—1+4%(r./r)’ ifr<rsgn=2

K (r, ;) can be expanded into the following series:

i e s

2
‘ F) = n-1)(n+2) /H
(A7) K (T, 14) (2n+1)H[1+ L_l(_12x3 (r)+']
where
0 if r2rs
H = {
rs-r otherwise

Proof: n# 2:

! H , (+3)(n42) (H ¥, (043)(n+2)(n+1) (H Y
(r = 1+(n43) =+ 5 (‘r— b 2x3 (r)+'“

(&)“"“’ - 1-@y 8, @AY (BY @l HY,

r 2 r 2x3 r
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Hence

K(r.r)—r[(n-l){u+n+2( ) "—‘fg)’f%ﬂl(%)a+...}

- (n+2) {- %{- e 2;—1 (%) ;-:; ( )3 }]

(20+41) H [1+ -(1‘:%);(";—*9-(;“-)3-]

n= 2
=) 3
s \ H 5x4 /H 5x4x3 H)
p=-4 = + —_— o —— o —
(r/ 5 5r 2 (r) 2x3 (r
e BT e (0 8 e
kg & o (B)d (2] -
(/1) 2 (r 3 \T
Hence

This formula satisfies (A.7) for n =2,

Proposition 3:

(A.8) Sag(N) = 7 A, P (to)

|=O




S i T A 5 B RO S L0 ot 4kl o o A M G w--

where

(A.9)

implies

where

and

to
o= [t~ ) By at
ok

_ o M(M+1)[ By-Pusz _ Pusa-Pu
Sdem =2 2M+1 [2M-1 Pre1 - o M#3 P""]

Pu = Pu (to)

N if N is odd
{N+1 if N is even

Proof: We have:

to i
sagm = [ (-t Y Bah Pacto) dt
-tO n=0

From Churchill (1963, p. 214), we obtain:

N

N
(A.10) }- P (t) Pa(to) =z (2n+1) Py(t) P, (to)= (N+1) Py (H)Pr(to) - P (to) Pi(t)

t-to

n=0 n=0

Thus we arrive at:

to
68g(N) = (N41) [ (to + 1) [ Buss (to) Pu(t) = Brwn (t) B (to) | d ¢
S "
to
[ 1t Bes (to) Pt - to Pra () Bu(to) d £, N = 0dd
= 2(N+) x

{ 0
T [to Pnsr (to) Ph(t) =t Pysy (PN (to)]d t, N =even
0




In the last derivation we have used the fact that Py is odd if N is odd and even
if N is even.

We use the following substitution (see Churchill, 1963, p. 206):

(A.11) tB(t) = 2N+1 [(N+1) Pua(t) + N Pv-y(t)]
Then we obtain for odd N:
to
A1) sagy = 2 BN [ {pu, 1) Pua(t)- Pua(t) Proa (o)l d t
o

- (N+1)N Py - Pn-2 !&ﬁi—lﬁL ]
2 N1 oN-1 . M T TaNag M2

where we have used the abbreviation:

Py = Py (to)

(A.12) was obtained by the following relations from Churchill (1963, p. 207):

(A.13) @o41) [ But)dt = Pouy (t) - Par(t)
and

Pex+1 (0) = 0

For N even we obtain in the same way:

5 (N+1)(N+2) [ P4y = Py—3 " _1'_3__._.1..
Qg (N) = 2 25003 oNTL . ™ T Tanes P“]
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Proposition 4:

to N
svan = [ (18- 67 ) @m1) Py (1) Puto) d ¢
n=0
~to
implies
6V(N) = t5 gn(t)
where

= 9 M(M+1) [ Py(t)- Pu_3(t) _ Pua(t)-Pu(t)
Bu(t) = 2 oMl am-1 (o) TS Pres (o) ]

N if N is odd
= {

N+1 if N is even

and

DET R ¢

Proof: From the derivation of Prop. 3, we obtain (for odd N):

t
(A.14) ovin = [ (t5- ) gty dt
0

where

g = 2 SEEL (B (to) i () - P (8) Bues (to) ]

Integrating (A.14) by parts, we obtain:

to
t
bv(N) = ((tqa- t) sulo°+ 2 I tga(tydt




- o s U L X L AR A T

The first term is zero because gy (0) =0 and for the second term we may
use the mean value theorem of integral calculus (Bartle, 1964, p. 303).
The result is:

to
(A.15) v =2 [t dt= g td
[o]
where
0<Ts ¢

In the same way the proposition is proved for even N.

Corollary 4: to=1~ 6V(N) =0 for N= 4,

Proof: We may integrate the first part of (A. 15) one more time by parts.
Then we obtain:

to
6V(N) = 2t Gulto) - 2 | Gu(hdt
o

where

Gn (t) = f gn(tydt

From the expression for gy in Proposition 4 and (A. 13) it follows that:

1
gn (1) = Gn(l) = J-Gu(t)dt=0 for N> 4
(o]

which implies

SV(N)=0 for to=1




Appendix A.3

A.3 Estimates of the Optimum Degree of Expansion from Surface Mean Anomalies

We assume that we have a complete coverage of mean gravity "
anomalies (Ag) over blocks of size 6° x 6° on the mean earth sphere. As
we have a finite set of mean anomalies, this mean gravity field can always
be expanded into a finite series of spherical harmonics. If the number of
coefficients (k) equals the number of mean anomalies (£) there is a unique
set of coefficients A,,, B,, that satisfies all equations:

e AR b e

N n
(A.16) Ag; = 3" 3-‘ clr_ “‘ (ApscosmA + By, sinmA) By, (8in@) d o
- - !
n=0 =0 o

where

i Ay 25 ik R

N degree of truncation

o, the area of the ith block

These coefficients can therefore be determined by solving a regular matrix
equation, and the solution will give the exact mean value over each block.

Theoretically we are not limited to £=k coefficients in order to
obtain a solution that fits all Ag, . If k > £ (more coefficients than observa-
tions) the solution is not unique. One solution is thus obtained by using
condition adjustment:

YA=48g - A=Y (YY) &
where
A = vector of unknown coefficients

Y

vector of spherical harmonics (integrated over each block)

A8 = vector of mean anomalies

Thus there are different sets of coefficients that satisfy the observations and
there is no evidence that one set is superior to another.




In a different approach we expand Ag into a complete set of spherical
harmonics:

(A.17) Ag = i z (2 cOSMA + by, sinmA) P, (8in0)
n=0 »=0
where
a, cosmA

4%1 H e {sin m)«} Pu (sin9) d 0

o

If this series is truncated it will not be complete and will not satisfy the observed
mean anomalies. This tendency has been verified by Rapp (1977, p. 42). Thus
the commonly used rule of the optimum degree of truncation:

_ 180°
(A.18) Noptimum,' “8°

where 6° is the block size, does not hold for mean anomalies.
We may then ask whether (A.18) is valid for estimating point anomalies

(Ag). We assume that Ag may be expanded into a convergent series at each
point of the mean earth sphere:

~18

(A.19) Ag = g, ?

L

n=0

where

ikl e i ek bk

Ag,= ) (CmacosmA + S,, sinm)) B,, (sin ®)

g

(]

The smoothed field (A.17) is then related to Ag according to:

A.200 8= [[ By dew do, =) Mg B, |

o n=0

where B (x.y) is the integral kernel of the smoothing operator and B, are its
eigen values.
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Assuming that each block has the same size as a circular disk of
spherical radius:

Yo = (0sm 6/m?

we obtain from Meissl (1971):

1 —L.._ x.yzcoswo

B (xy) = {20" Srkonts

otherwise

8, = 1 Py (c08Y0)~Ppyy (c08Y o)

" 1-cosdo 2n+1

Comparing (A.17), (A.19) and (A.20) we obtain:

Ell aﬂl

{Ackh) {gu} - 1;‘ {b_}

Thus the correct spherical harmonic coefficients of Ag are given by the
coefficients of the mean anomalies divided by 8,. Theoretically this
estimate of Ag is improved for each additional coefficient included in the
series (A.19), However, the estimates of the coefficients according to
(A.21) are poor for higher degrees, because B, approaches zero, Thus we
have in practice to limit ourselves to a finite number of coefficients.

Let us now assume that we estimate Ag by a truncated form of (A.20):

&= . 8,

n=0

The error of this estimate is then given by:

&'“gz “n(pu‘l)"? &g,

n=0 n=N41

i




As the spherical harmonics of different degrees are orthogonal to each
other, we obtain the following global RMS error:

N s %
&g agll =Y o2 1- Ba)°+Y o7 ]
n-=0 n=N+1
or
© N =
(A.22) llAt-Ag|l=[? Of-z o7 B, (2-B,)]
n=0 =0
where

gl ) 2
% = .”Ag"do

We define Noptimum as the value of N that provides the minimum
RMS error of &Y [formula (A.22)]. In Figure A.1, Noptimum is given as
a function of the block size 6° x 6°. The computations are based on the
degree variances (cr,;"J ) of Tscherning and Rapp (1974). The diagram clearly
shows that the optimum degree of truncation is higher than is indicated by
the rule (A.18).

Finally, we conclude that if the coefficients of (A.16) are solved from
a system of linear equations, there is one unique solution of this system if
the number of equations (£) equals the number of coefficients (k). If k >4
the solution is not unique. We may not conclude that one set of coefficients
is generally superior to another set.

If the spherical harmonic expansion is solved by integration, the
solution will converge to the original mean anomalies for an infinite number
of coefficients, Comparing a truncated form of this series with point
anomalies we arrive at the conclusion that the optimum degree of truncation
is higher than the rule of thumb (A.18).




s et i R A R e

uo1D}d4 payndwio)

.A_!.md ddey pue Sujurayos ], jo sa0UBIBA 99180p 9 UO poseq aae suoryeyndurod
ML °,@ X 0 9ZIS }OO[q JO SII[BUIOUB UBdW 0BJINS W0J pIoty LAiaead
9y} jo uoisurdxa ojuowrawy [edjxayds e Jo wolgeouUnT) Jo 3ai8ap wnwyydo oyl °I°y LanBig

00

[4

NOILVYONNYL 40 334930 WNNILHO

=70~




B T —

WO/ 0T x 1 x™q =9 ‘WO/ 0T X I x"e =V

{pazI[BWIOU 818 SJUSIOIPI00 9yl ‘pojedioppue sy

[jIeo UvowW [eolaayds v °[9A9] BAS 3B I JO uolsuedxas
oruowrxey [eolxayds ayj JO SjUIOIJJO00 01X payndwo) °I°V 9d[qel

c0°0 €6 ° 0~
90°0- 8I°'I-

10°2- Sl *0-
89°'1- 8¢'0
61 1~

80°0- 20°0 91 91 ¥H'0- 62'0- SI 9I
81'0- £2°0- %I 91 92'0 610 €I 91
B nist 8l
9= 5 oy . ge'o- 11°'0 Ol 0l 68°'@ 98°0 6 OI
86'6 ©82°0- 8 91 06'0- 80'0- 2 OI vod it g e e 8 2w
: : ; ; £2°0 c o- 1= ‘0-
660 BI'I- 9 91 2p'0- 60°0- S 9I . b 5 R,
19'0 22°I- % 91 91'0- 81'06- € 9I A 1 S B =2 o
60  B21- T 91 gi'o 20 I O 4 ]
Sle -y B e BT OB 6 R Rk
SZ'0- %0°0- HI S1 ZTO'6- 22°6- €I &I e Bl N R N
¢€'0 860 T S 62'0- 81'6- 11 Sl s B 2Ry e ey
0I'0 G62'0 - Ol SI 29'0- OI'0 6 Sl o0 S sl e (0 TR e
$%'0 ¥8'0- 8 S 61'0 S0°0 2 Sl T 4
20'0- OI'l- 9 CI 28'0 02°0 & Sl : = ! :
28°0- 90'I- % SI ¥l  62'0 € SI e e L e =2 D
ob'0- 2C'0- T S 261 B86'0- 1 &I N -l B G 2 T g -
210~ a1 2e'0- 86°0 2 8 06°I ww“«u 1 w !
21'0  61'0- %I ¥I %2'0  90°0 €I ¥l - :
ee =: tuat B vy N i e
02'0 22°1- 8 %1 €¥'L  91'0 2 Bl B XS e
1€'0- €6°0- 9 %I 8F'l 890 S Bl e1- X -4 e e 23
$H'0- €60 ¥ ¥ 631 12°06 € ¥l 9g'0- 9I°€ Z2 %6 448 -
e G B B R ¢ 00'0- gI'I- 9 9 ZTI'Z 09°0- & 9
o—.s O-.@I Mw— ﬂ_— ﬂhnﬂl .—v.nw ' 0 Oh-@l g.e ﬂ 0
c2'6 €0°0 21 &l 10'I- 220 11 €1 N0 WE &9 MmN
9z'0- 08°'0- oI €1 10'I Se'6 6 €I PRSI & acilsogs
¢l'6- 29°0- 8 €1 82'1 20'0- 2 €I ol BEE P B AR e S
686'0- 28'0 9 €I 620 S2'6 & €I Y e e E oA et
¥p'0- ¥8'1 % €1 €0 200 € €I 5 :
oty U BN RS SRR - SR - 92'6 1%'1 ¥ % 2TL'E- 8BS0 € ¥
60°'0- €1'0  TI ZI $0'0- 0Z'0- 11 ZI B e B R SRS R
§f ErorE T 8L G oy B gk
. N Py B E i
60°'0 260 3T 21 S0°Z- ¥z'0- 1 3l U WeE B A e TR
€e'o- 10 11 II o8 :
€0'0- Ev'0- Ol I1 $6°1  »b'06- 6 11 -+ H
60°'0- SI'I 8 11 @0'I- 220 2 II
ggie- gl 9 11 sSl- 90°0 g I " v X n « v s &
z 11 P

i




B e o urwa——

- “
*1eSw :jyun  *pajedionue si
)Ieo Ueaw [BolIayds Y °[0A9] BOs je 8y jJo uorsuedxd
Jruowrxey .m.wc._hwﬂnmm 9} JO SjUIIOIJIS0D JI0JIID ﬁgasoo *Z2°V °Iqel
| Yol %1 %1 91 ol  sei ol ol
| 44 h : . : :
| 22 S2'9- TI 91 gTIi'e- 98I~ Il 91 vo'c- 62z o1 Ol B8  o8'E 6 OF
m o8- Be ol T S S1 o BT . mw.mu "Mm : -
; g9°0- 91 gI'g- I£°0 I 5 = 30" €- »
| " " s 0 90°9  £9'8- % Ol €2°%- ©E'Z- € Ol
| " 22'0 %6°T- 9 91 83'I- 98°1- ¢ 91 gv'e  99'8- T O <SS~ esle- 1 ol
| @ T Lgour v i o BE ¢ §
i s ‘g- s 21°1- 91 i
| - oA gl 11'2  89°2 B8 6 %S'2- 83'S 2 6
| £9°0 12°0 el g1 ¥8°c P E- 9 6 £8°0 £9° - S 6
a €8'i- 6%°0- HI SI TI°'T- H2'0- €1 CI : 91°¢ %°'6- % 6 £8'% 61°2 € 6
, e1'T  $S°1- 31 &1 26°0- 98°0- II SI _ ¢e'1- 6e°2- T 6 ggtOl 928 I 6
| 12°0 zO°1 o1 S1 gg'o- 82°I 6 &I 5 S€°9- 6
., g2'c 22'1- 8 81 980 Ii‘e 2 21 9%-'¢- ¥2'6- 8 8 ¢€8'6- ©9'8 2 8
| 20'i- Ov'I- 9 S1 92°I 860 ¢ &I 62°2 I£°'2--' 98 B 998 $Ps B8
" 18'2- 20°8- % S ©9'¢ 282 © 8l lece- 22°2- % 8 2z o1y € 8
| ¥2°C- €0°I- T S1 %8'%  02'0- [ &I T IR D W
“ 26°1 gl 2%°9- o1 "~ 2 2
| 9%°1 g1'0- ®I ¥1 63°2  92°0- £I I ; : Z :
| €S°'1- 68°0- TI ¥1 TI'€~ €6°0- II BI gg'1- gTe'ge- 9 2 ®I'8  OF'T- S 2
| 08'0- o0%'T Ol ¥I 18°I 61°1 6 ¥l gg'0- 82% ¥ 2 W P2H € 2
| 08°0 20°%- 8 %I 6l'vy $0'0 2 Bl g2'g- ¢g'S1 T 2 €1'9 90°9 1 2
, €8°'1- 22°'0- 9 %I 08°T 1S'2 S %I . e - £8°2 2
€9°2- 16°0- % ®I 921 £€9°0 g ¥l ¥e°1 ¢'g- 9 9 TT'H S6's- S 9
ge'z- €806 T ¥ 21T 1i°1 T %1 60°9- 66°81 ¥ 9 00'8- BS'E B 9
®2°0- H1 i 09°'i- 68°6 g 9 2°11- sT'e- 1 9
$2'0 62°1- 81 8l . 8z 11 4
g6°% 02°2- Tl &1 9I'S- 2B'l 11 €1 ¢ ; 88°11 92°%- S 8
g0°2- 080 OI €1 22t 88Z 6 €I 66:2- g9°S1 % S 90°€I- D29 T §
em.m- 9¢'e- 8 €1 ¢8¢'g  28'I- 2 8l g2¢'v- @6'9- T S ©9'8- B R
£€2'2- 96°1 9 eI %'l £8°1 g €I s : > i
2z'6- 100 % €1 ¥5°0 09'0- € €I €121 36z ¥ ¥ 22°TI- T2 £ ¥
79°'8- OGI'2 T €1 88'€  69°I 1 €1 28°1 o2'ge- ¢ ¥ 99°lI- je'9- 1 ¥
B 2 6% So-1 & 8§
PP 1- ob'0- 2SI 21 BI'E  06€°0- 11 TI : ¥
€8'0 12'0- OI 21 28'% T6'0- 6 gl €8'6 ©€1'23- 2 € w06 B2°2- 1 €
11'0- €2'60- 8 21 ¢2'i- 81'2- 2 2I . 28" 91- €
22°0- 91'¢ 9 gI BI'I- 330 ¢ 2l 22’2 9%°2I- T T ge'21 1e'1- 1 T
00°'2- 61°'1 % TI 09'%- o9'b- & 2Tl ; ot ®
92°0- 61 T 21 222~ #9°0- i 2l padieat b - < T 0 -
22'0- a1 5
o1z 25'z o1 11 08's  se'6- & I pal
< V" e ‘e~ 6 I
£0°0 96°'0 8 Il £0'%- S8°0 2 II € v L g v LA
2i'o- ©0'% 9 II 0S'I- 260 § II
12°0- ¢8°2- % II 2£'9- Op'l- € 11
#'i- $8°2- T 11 GO'»- 08°H 1
1

»9 o=

P
i
i

r—————

VT e




T

- -

»1°0
10°1-

cl°e
€6°0-
65°0
28°1
29°1
$c°1

€y 0~

NEFO DONEO
v

4!
<l
ol

N¥oRD

P1
Gl
o1

NTOD

A 1]

NTODS
-

ety vy v -y
-

WD/ 0T X 1 x™q=¢ ‘WD/ 0T x 1 x¥e =V
{PazI[ewIou 3Ie SHUSOYIS00 YL °9G°86C = J pue

ury O¥1°8LE9 = B Y3im prosdif[e [9A3] € st pajediofjue
ST 3de0 Ugswr 9y, °‘wy [L€9 = I X0} I Jo uorsuedxs
oruowraey [eorxayds oy JO SHUSIOIJJ90D J0II1d payndwo)

21°0- 60°0- Sl 91
0S°0 20°0 €1 91
02 0- £0°0- 11 91 20°0~
10° 1~ 20°0~- 6 09I 91°0
$0°1- cl'o 2 91 o1°0
»2°0
8s°0- SO0°'0 S 91 .
12°0- £€0°0 € 91 =« s
10°0 00°0- 1 91
ee°1- 91 10°0
<0 0~ 21°0- ST GI 0c°'0
4] 920 °0- €1 G1 ce 0
18°0~ 11°0 11 g1 11°0
$8°0- 11°0 6 GI "
80° 0~ 91°'0 2 81 | 12°0~
c9°0 21°0 S Q1 | 62°0
82°1 81°0 ¢ SI : 21°0
cS°1 GO0 I g1 : 11°0-
92°0~ Sl
2C°0 91 “0- €1 »I
90°1-~ o1°'0 11 %1 80°0
11°0- 12°0 6 %1 £6° 0~
80°1 60°0 2 b1 2l 0~
9% 1 o1°0 S i
89°1 91°0 e ¥I 20°0-
22°1 80°0 I %I 28°0~
19°0 14 11°0-
92°0 60 " 0- el 61 |
18°0- €0°0 11 81 _
22°0 90°0 6 €I 61 ‘0~
Shb°1 %0 °0- 2 81 02 60—
60°1 20°0- S g1
cg°'o %00~ e g€l $2°0
ce'o $0°0 1 oI £0°0-
981 el
26°0~ cl'o 11 21
PPl 81 ‘0~ 6 2Tl c%°0
29°0 c3 0~ 2 21
cg'0- 0I1°0- g ¢l 29°0
PI°1- 0c°0- e @l
8s°1- 20°0- I Q1
I1°1 cl
60°0- SC°'0 11 11
gS°1 230~ 6 11
<90~ €Z°0- Z 11 qa
€9°1- <0°'0- S I1
S6°1- $1°0- e 11
»1°C- 2l ‘0- 1 ““

‘€'V 9IqelL

S0°0
9G°1
$c'0- -
oy~
81 °c-

L4808

v 1~
GG 'C~
¥0°'c-

sv'0
28°1-
811~
10°0

NTOLD NTOD
VRRVD oo

-73-

NTY AT
VOe i

N N Aw
) ¢ e v

6
2
<
2]
L ¢
6
2
]
1]
I
2
S
]
I
2
S
e
I
S
e
1
S
]
¢
e
I
€
T
| ¢
¢

B O=~NNOOOETTONNNOECOOMMNMNN MOIDODODDISIOOR




e e

‘183w U0 °9G°86Z = J pue

wy 0FT"8LEY = B Y prosdi[[e [2A3] © se pajediojjue

S1 Y)IBo UBOW 9YJ, ‘W [L€9 = I X0 8y Jo uoisuedxa
oruouLIRy [edtIoyds oY) JO SJUSIDIJFI0O 0119 payndwio) °§°V oIqBlL

ob'1- 62'1- 9 91 SI'I- ¥8'0- &I 9I
091 @v-0 T o1 50-0- Se-0- 11 ol
. . ~ RO °0- ap 0~ 5 2 S 4L
L e o e B U - m g oas e oo |
96'6 8€'0- 8 91 89°2- I2'l 2 09I o feil- 58 L% i3 &%
: 2 . i 611 “g- 8- 22°
11°1 62°T- 9 ol 22'0- 21'0- § 9OI ; 8- 8- e
$9'C 66°8- % 91 £€b'0- H2'0- € 91 SBEE SEESs TR W Avh SRS LT
$6°1  99'C- T 91 60°0- €°0- 1 Ol IR, - g
1S - o1 s A : -
e s Y e | gile 688 8 6 2% M9 18
ge @ HE e 5 Hi e BE oroomE o@log
e e N e i § W i ai h e S L
. L . . q 5 1 - oo .
11'6 80°2- 9 €& %I 08'0 g SI Il B Y a Bt it it
—--6g'1  98'€- ¥ S 868 020 & &I oL . e e =R
29°6 €0'b- T SI S9°F £0°0- I CI : . HE ae zeé e Tee T .
228~ g1 . A e -
R S £ M R , _— _
: e~ 2 3 g : ; : s 2
] 16'0- 61°0 oI I »8°0- 92T 6 »I et Y S LiEE 2y
i £0°0- 62'I- 8 »I £9°€  03'0- 2 %I o Bl MR B e
i 91~ 9¢'0 b b1 20'6 &It & oI g 289 z
el ; 5 " 9¢'0- CP'S- 9 9 082 9%°2- ¢ 9
8e'0- 9z T ¥ 98 80 T 3 s e Y s L
eS¢ gl €2'1- e°'11 T 9 1Is'8- 828 1 0O
95°1  g9'I- Tl 1 €8'I- 280  II €1 WG - - SN
e N e S & 28°0- TH'OL % & SH'II- 620 S &
Hn om BT S B S0 @aC 8 g 9g°¢- 260 T 8 6ezoI- @' 1 g
. : i ondh ; : ; .
- : A X e 19  ©9'% % B 28°9- 69°Il € %
@°I- 882 T €1 8’1  ee0 I gl 2io- so-o1- T v ome- 8w 1 3
He o me §Eour ELovE m BIosd
| : ‘0- “p ‘i- s e . -
w @0 o39- 8'E & B I E | ®2rs  ei'mi- T 8 @I % 1 S
W ‘6= ‘g ‘0~  2'0- 7 : ; A : 4
! 18°0- 2e'S % I 89'E- 68'1- & Tl e M Bl R i
gb'1- ©6'9 T 21 #9'k- 900 1 I s el
i 06°¢ 21 - Bt :
82'0- $8°Z 11 11 . :
oy omaoen @8 E
m : - g°2- %g'3- 2 II
' 620~ 09°CT 9 11.88'%- 09'0 & II . ol et R SO i
g6 I1'Z % 11 68°S- £0'1- € II
910  Zol- T 11 g6'2- 8O- I II

e gy e




